MATH 320 FINAL SUMMARY

Chapter 1

Topics to know: subspaces, span, linear independence, basis, dimension.

- (1) $W \subset V$ is a subspace if it has the zero vector, it is closed under vector addition and scalar multiplication;
- (2) If $S \subset V$ is a set of vectors, then Span(S) is the set of all linear combinations of S and is the smallest subspace of V containing S.
- (3) $\{x_1, ..., x_n\}$ are linearly independent iff whenever $a_1x_1 + ... a_nx_n = \vec{0}$, then $a_1 = a_2 = ... = a_n = 0$.
- (4) α is a basis for V iff it is linearly independent and $Span(\alpha) = V$.
- (5) $\dim(V) = k$ if V has a basis α of size k, and in that case:
 - (a) if $L \subset V$ is linearly independent, then $|L| \leq k$, and L can be extended to a basis,
 - (b) if $G \subset V$, Span(G) = V, then $|G| \ge k$ and V has a basis $\beta \subset G$,
 - (c) if $\gamma \subset V$ has size k, then γ is linearly independent iff γ spans V iff γ is a basis for V.

Suppose W_1, W_2 are two subspaces of V. Then (know how to prove that) $W_1 \cap W_2$ and $W_1 + W_2$ are subspaces, but $W_1 \cup W_2$ is usually not a subspace. **Direct products:** $V = W_1 \oplus W_2$ iff $V = W_1 + W_2$ and $W_1 \cap W_2 = \{\vec{0}\}$

Chapter 2

Let $T: V \to W$ be a linear transformation, V, W vector spaces over F.

- (1) The dimension theorem: $\dim(V) = nullity(T) + rank(T)$.
- (2) If V, W have the same finite dimension, then T is onto iff T is one-to-one iff ker $(T) = \{\vec{0}\}$.
- (3) T is invertible iff T is one-to-one and onto iff V, W are isomorphic. Then we write $V \cong W$.
- (4) If $\dim(V) = n$, then $V \cong F^n$.
- (5) If $\dim(V) = \dim(W)$, then $V \cong W$.
- (6) If dim(V) = n and β is a basis for V, then $[x]_{\beta} \in F^n$ is the **co-ordinate vector of** x **relative to** β , and $\phi_{\beta} : V \to F^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}$ is an isomorphism (i.e. it's one-to-one, onto, and linear).
- (7) If $T: V \to W$ linear, V, W finite dimensional, β is a basis for V, γ is a basis for W, then $[T]^{\gamma}_{\beta}$ is the corresponding matrix representation and for any $x \in V$,

$$[T]^{\gamma}_{\beta}[x]_{\beta} = [T(x)]_{\gamma}.$$

(8) If $T: V \to W$ and $T: W \to Z$ are linear transformation, then so is $UT: V \to Z$ defined by UT(x) = U(T(x)), and if α, β, γ are bases for V, U, Z, respectively, then

$$[U^{\gamma}_{\beta}][T]^{\beta}_{\alpha} = [UT]^{\gamma}_{\alpha}.$$

(9) If A is n by n and e is the standard basis for F^n , then $[L_A]_e = A$. (L_A denotes multiplication by A.)

Inverses: If $T: V \to W$ is a one-to-one, onto linear transformation, then its **inverse** is $T^{-1}: W \to V$ defined by $T^{-1}(y) = x$ iff T(x) = y. An $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix B, such that $AB = BA = I_n$. Then we write $B = A^{-1}$.

Lemma 1. Let dim(V) = dim(W) = n, and $T : V \to W$ be a linear transformation, β any basis for V, γ any basis for W. Then T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible.

Also, in that case, if $A = [T]^{\gamma}_{\beta}$, then $A^{-1} = [T^{-1}]^{\beta}_{\gamma}$.

By the above, we get A is invertible iff L_A is invertible.

Recall that $I_V: V \to V$ is the identity linear transformation, i.e. $I_V(x) = x$ for all $x \in V$.

Theorem 2. Suppose V is finite dimensional vector space and β, α are two bases for V. The change of coordinate matrix from α to β , $Q = [I_V]^{\beta}_{\alpha}$ is such that:

- (1) for every vector $x \in V$, $Q[x]_{\alpha} = [x]_{\beta}$,
- (2) Q is invertible and $Q^{-1} = [I_V]^{\alpha}_{\beta}$,
- (3) If $T: V \to V$ is a linear transformation, then $[T]_{\alpha} = Q^{-1}[T]_{\beta}Q$

Definition 3. Suppose that $A, B \in M_{n,n}(F)$. We say that A and B are similar if there is an invertible matrix Q such that $A = Q^{-1}BQ$. We write $A \sim B$

We have that (know how to prove these):

- (1) \sim is an equivalence relation;
- (2) If $T: V \to V$ is linear, and α, β are two bases for V, then $[T]_{\alpha} \sim [T]_{\beta}$.
- (3) If $A \sim B$, then $\det(A tI_n) = \det(B tI_n)$.

Chapter 3,4

Let $A \in M_{n,k}(F)$. Then multiplication by A is $L_A : F^k \to F^n$, and for $b \in F^n$, we can consider Ax = b, which is a system of *n*-linear equations with k unknowns. Then:

(1) the solution set to the homogeneous system $Ax = \vec{0}$ is the kernel of A (in particular, it is a subspace);

 $\mathbf{2}$

MATH 320 FINAL SUMMARY

- (2) the solution set to Ax = b is of the form $S = \{s + k \mid k \in ker(A), s \text{ is some fixed solution to } Ax = b\};$
- (3) rank(A) = dim(range(A)) = dim(column space of A). Know how to prove the last equality. The first is the definition of rank.
- (4) dim(column space of A) = dim(row space of A), and so $rank(A) = rank(A^t)$.

Above A^t denotes the transpose of A. Note that (you can use this without proof), $(AB)^t = B^t A^t$. Also, A is symmetric is $A = A^t$. A is skew-symmetric if $A = -A^t$.

Let $A \in M_{n \times n}(F)$. We define **the determinant** by induction on n. If n = 1, det $(A) = A = a_{11}$. If n > 1, then we can compute the determinant by expanding along any row or column:

- (expanding along the first row:) $\det(A) = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot \det(A_{1k}),$
- (expanding along the *i*th row:) $\det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \cdot \det(A_{ik}),$
- (expanding along the *j*th column:) $\det(A) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \cdot \det(A_{kj}).$

Here A_{ij} is the submatrix of A obtained from removing the *i*-th row and the *j*th column of A.

Some useful properties about determinants:

- (1) the determinant is linear function of each row, when the other ones are fixed,
- (2) $\det(AB) = \det(A) \cdot \det(B)$, and so $\det(AB) = \det(BA)$,
- (3) $\det(A^t) = \det(A)$.

Let A be an $n \times n$ matrix. The following are equivalent:

- (1) $Ax = \vec{0}$ only has the trivial solution,
- (2) $Ax = \vec{b}$ always has a unique solution for any $b \in F^n$.
- (3) rank(A) = n
- (4) $\ker(A) = \{\vec{0}\}\$
- (5) A is invertible,
- (6) A is the product of elementary matrices,
- (7) A is row-reducible to I_n ,
- (8) $\det(A) \neq 0$.

Know what is an elementary matrix and what their determinants are.

Chapter 5 Diagonalization

If $T(x) = \lambda x$, for some non zero vector x, then x is an **eigenvector**, and λ is the corresponding **eigenvalue**. Similarly if $Ax = \lambda x$ for a non zero x.

 $T: V \to V$ is **diagonalizable** iff V has a basis β of eigenvectors for T iff $[T]_{\beta}$ is a diagonal matrix. Similarly, a matrix $A \in M_{n,n}(F)$ is **diagonaliz-able** iff $A \sim D$ for a diagonal matrix D iff F^n has a basis of eigenvectors for A.

How to find if $A \in M_{n,n}(F)$ is diagonalizable:

Step 1. set the characteristic polynomial of A equal to zero: $f(t) = det(A - tI_n) = 0$ and solve for t. The solutions are the eigenvalues.

Step 2. for each eigenvalue λ , solve $Ax = \lambda x$ for x, to find the linearly independent possible eigenvectors. That will be a basis for the **eigenspace** E_{λ} . Note that since λ is an eigenvalue, dim $(E_{\lambda}) \geq 1$.

Step 3. Add up all of the eigenvectors for the different eigenvalues and see if you have nlinearly independent many of them. If yes, then they are a basis for F^n and A is diagonalizable.

To find if $T: V \to V$ is diagonalizable, let e be the standard basis for V, and $A = [T]_e$. Do the above process for A.

Some nice properties of diagonal matrices: if D is diagonal with diagonal entries $d_{11}, d_{22}, ..., d_{nn}$, then:

- det(D) is the product of the d_{ii} 's.
- D^k is also a diagonal matrix with diagonal entries $d_{11}^k, d_{22}^k, ..., d_{nn}^k$.

Let $T: V \to V$ and $x \in V$. Then $W := Span(\{x, T(x), T^2(x), ...\})$ is the *T*-cyclic subspace of *V* generated by *x*. We have:

- W is the smallest T-invariant subspace containing x.
- If dim(W) = k, then $\{x, T(x), ..., T^{k-1}(x)\}$ is a basis for W.

Cayley-Hamilton theorem: If f(t) is the characteristic polynomial of $T: V \to V$, then $f(T) = T_0$ i.e. the zero linear transformation. Similarly, if f(t) is the characteristic polynomial of a matrix $A \in M_{n,n}$, then f(A) is the zero matrix.