MATH 320 FINAL SUMMARY

Chapter 1

Topics to know: subspaces, span, linear independence, basis, dimension.
(1) $W \subset V$ is a subspace if it has the zero vector, it is closed under vector addition and scalar multiplication;
(2) If $S \subset V$ is a set of vectors, then $\operatorname{Span}(S)$ is the set of all linear combinations of S and is the smallest subspace of V containing S.
(3) $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly independent iff whenever $a_{1} x_{1}+\ldots a_{n} x_{n}=\overrightarrow{0}$, then $a_{1}=a_{2}=\ldots=a_{n}=0$.
(4) α is a basis for V iff it is linearly independent and $\operatorname{Span}(\alpha)=V$.
(5) $\operatorname{dim}(V)=k$ if V has a basis α of size k, and in that case:
(a) if $L \subset V$ is linearly independent, then $|L| \leq k$, and L can be extended to a basis,
(b) if $G \subset V, \operatorname{Span}(G)=V$, then $|G| \geq k$ and V has a basis $\beta \subset G$,
(c) if $\gamma \subset V$ has size k, then γ is linearly independent iff γ spans V iff γ is a basis for V.
Suppose W_{1}, W_{2} are two subspaces of V. Then (know how to prove that) $W_{1} \cap W_{2}$ and $W_{1}+W_{2}$ are subspaces, but $W_{1} \cup W_{2}$ is usually not a subspace.
Direct products: $V=W_{1} \oplus W_{2}$ iff $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{\overrightarrow{0}\}$

Chapter 2

Let $T: V \rightarrow W$ be a linear transformation, V, W vector spaces over F.
(1) The dimension theorem: $\operatorname{dim}(V)=\operatorname{nullity}(T)+\operatorname{rank}(T)$.
(2) If V, W have the same finite dimension, then T is onto iff T is one-to-one iff $\operatorname{ker}(T)=\{\overrightarrow{0}\}$.
(3) T is invertible iff T is one-to-one and onto iff V, W are isomorphic. Then we write $V \cong W$.
(4) If $\operatorname{dim}(V)=n$, then $V \cong F^{n}$.
(5) If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then $V \cong W$.
(6) If $\operatorname{dim}(V)=n$ and β is a basis for V, then $[x]_{\beta} \in F^{n}$ is the coordinate vector of x relative to β, and $\phi_{\beta}: V \rightarrow F^{n}$ defined by $\phi_{\beta}(x)=[x]_{\beta}$ is an isomorphism (i.e. it's one-to-one, onto, and linear).
(7) If $T: V \rightarrow W$ linear, V, W finite dimensional, β is a basis for V, γ is a basis for W, then $[T]_{\beta}^{\gamma}$ is the corresponding matrix representation and for any $x \in V$,

$$
[T]_{\beta}^{\gamma}[x]_{\beta}=[T(x)]_{\gamma}
$$

(8) If $T: V \rightarrow W$ and $T: W \rightarrow Z$ are linear transformation, then so is $U T: V \rightarrow Z$ defined by $U T(x)=U(T(x))$, and if α, β, γ are bases for V, U, Z, respectively, then

$$
\left[U_{\beta}^{\gamma}\right][T]_{\alpha}^{\beta}=[U T]_{\alpha}^{\gamma}
$$

(9) If A is n by n and e is the standard basis for F^{n}, then $\left[L_{A}\right]_{e}=A$. (L_{A} denotes multiplication by A.)

Inverses: If $T: V \rightarrow W$ is a one-to-one, onto linear transformation, then its inverse is $T^{-1}: W \rightarrow V$ defined by $T^{-1}(y)=x$ iff $T(x)=y$. An $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B, such that $A B=B A=I_{n}$. Then we write $B=A^{-1}$.

Lemma 1. Let $\operatorname{dim}(V)=\operatorname{dim}(W)=n$, and $T: V \rightarrow W$ be a linear transformation, β any basis for V, γ any basis for W. Then T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible.

Also, in that case, if $A=[T]_{\beta}^{\gamma}$, then $A^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}$.
By the above, we get A is invertible iff L_{A} is invertible.
Recall that $I_{V}: V \rightarrow V$ is the identity linear transformation, i.e. $I_{V}(x)=$ x for all $x \in V$.

Theorem 2. Suppose V is finite dimensional vector space and β, α are two bases for V. The change of coordinate matrix from α to $\beta, Q=\left[I_{V}\right]_{\alpha}^{\beta}$ is such that:
(1) for every vector $x \in V, Q[x]_{\alpha}=[x]_{\beta}$,
(2) Q is invertible and $Q^{-1}=\left[I_{V}\right]_{\beta}^{\alpha}$,
(3) If $T: V \rightarrow V$ is a linear transformation, then $[T]_{\alpha}=Q^{-1}[T]_{\beta} Q$

Definition 3. Suppose that $A, B \in M_{n, n}(F)$. We say that A and B are similar if there is an invertible matrix Q such that $A=Q^{-1} B Q$. We write $A \sim B$

We have that (know how to prove these):
(1) \sim is an equivalence relation;
(2) If $T: V \rightarrow V$ is linear, and α, β are two bases for V, then $[T]_{\alpha} \sim[T]_{\beta}$.
(3) If $A \sim B$, then $\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(B-t I_{n}\right)$.

Chapter 3,4

Let $A \in M_{n, k}(F)$. Then multiplication by A is $L_{A}: F^{k} \rightarrow F^{n}$, and for $b \in F^{n}$, we can consider $A x=b$, which is a system of n - linear equations with k unknowns. Then:
(1) the solution set to the homogeneous system $A x=\overrightarrow{0}$ is the kernel of A (in particular, it is a subspace);
(2) the solution set to $A x=b$ is of the form $S=\{s+k \mid k \in$ $\operatorname{ker}(A), s$ is some fixed solution to $A x=b\} ;$
(3) $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{range}(A))=\operatorname{dim}($ column space of $A)$. Know how to prove the last equality. The first is the definition of rank.
(4) $\operatorname{dim}($ column space of $A)=\operatorname{dim}($ row space of $A)$, and so $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A^{t}\right)$.
Above A^{t} denotes the transpose of A. Note that (you can use this without proof), $(A B)^{t}=B^{t} A^{t}$. Also, A is symmetric is $A=A^{t}$. A is skewsymmetric if $A=-A^{t}$.

Let $A \in M_{n \times n}(F)$. We define the determinant by induction on n. If $n=1, \operatorname{det}(A)=A=a_{11}$. If $n>1$, then we can compute the determinant by expanding along any row or column:

- (expanding along the first row:) $\operatorname{det}(A)=\Sigma_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot \operatorname{det}\left(A_{1 k}\right)$,
- (expanding along the i th row:) $\operatorname{det}(A)=\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \cdot \operatorname{det}\left(A_{i k}\right)$,
- (expanding along the j th column:) $\operatorname{det}(A)=\sum_{k=1}^{n}(-1)^{k+j} a_{k j} \cdot \operatorname{det}\left(A_{k j}\right)$.

Here $A_{i j}$ is the submatrix of A obtained from removing the i-th row and the j th column of A.

Some useful properties about determinants:
(1) the determinant is linear function of each row, when the other ones are fixed,
(2) $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$, and so $\operatorname{det}(A B)=\operatorname{det}(B A)$,
(3) $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.

Let A be an $n \times n$ matrix. The following are equivalent:
(1) $A x=\overrightarrow{0}$ only has the trivial solution,
(2) $A x=\vec{b}$ always has a unique solution for any $b \in F^{n}$.
(3) $\operatorname{rank}(A)=n$
(4) $\operatorname{ker}(A)=\{\overrightarrow{0}\}$
(5) A is invertible,
(6) A is the product of elementary matrices,
(7) A is row-reducible to I_{n},
(8) $\operatorname{det}(A) \neq 0$.

Know what is an elementary matrix and what their determinants are.

Chapter 5 Diagonalization

If $T(x)=\lambda x$, for some non zero vector x, then x is an eigenvector, and λ is the corresponding eigenvalue. Similarly if $A x=\lambda x$ for a non zero x.
$T: V \rightarrow V$ is diagonalizable iff V has a basis β of eigenvectors for T iff $[T]_{\beta}$ is a diagonal matrix. Similarly, a matrix $A \in M_{n, n}(F)$ is diagonalizable iff $A \sim D$ for a diagonal matrix D iff F^{n} has a basis of eigenvectors for A.

How to find if $A \in M_{n, n}(F)$ is diagonalizable:

Step 1. set the characteristic polynomial of A equal to zero: $f(t)=$ $\operatorname{det}\left(A-t I_{n}\right)=0$ and solve for t. The solutions are the eigenvalues.

Step 2. for each eigenvalue λ, solve $A x=\lambda x$ for x, to find the linearly independent possible eigenvectors. That will be a basis for the eigenspace E_{λ}. Note that since λ is an eigenvalue, $\operatorname{dim}\left(E_{\lambda}\right) \geq 1$.

Step 3. Add up all of the eigenvectors for the different eigenvalues and see if you have nlinearly independent many of them. If yes, then they are a basis for F^{n} and A is diagonalizable.

To find if $T: V \rightarrow V$ is diagonalizable, let e be the standard basis for V, and $A=[T]_{e}$. Do the above process for A.

Some nice properties of diagonal matrices: if D is diagonal with diagonal entries $d_{11}, d_{22}, \ldots, d_{n n}$, then:

- $\operatorname{det}(D)$ is the product of the $d_{i i}$'s.
- D^{k} is also a diagonal matrix with diagonal entries $d_{11}^{k}, d_{22}^{k}, \ldots, d_{n n}^{k}$.

Let $T: V \rightarrow V$ and $x \in V$. Then $W:=\operatorname{Span}\left(\left\{x, T(x), T^{2}(x), \ldots\right\}\right)$ is the T-cyclic subspace of V generated by x. We have:

- W is the smallest T-invariant subspace containing x.
- If $\operatorname{dim}(W)=k$, then $\left\{x, T(x), \ldots, T^{k-1}(x)\right\}$ is a basis for W.

Cayley-Hamilton theorem: If $f(t)$ is the characteristic polynomial of $T: V \rightarrow V$, then $f(T)=T_{0}$ i.e. the zero linear transformation. Similarly, if $f(t)$ is the characteristic polynomial of a matrix $A \in M_{n, n}$, then $f(A)$ is the zero matrix.

